Generating an informative cover for association rules
نویسندگان
چکیده
Mining association rules may generate a large numbers of rules making the results hard to analyze manually. Pasquier et al. have discussed the generation of GuiguesDuquenne–Luxenburger basis (GD-L basis). Using a similar approach, we introduce a new rule of inference and define the notion of association rules cover as a minimal set of rules that are non-redundant with respect to this new rule of inference. Our experimental results (obtained using both synthetic and real data sets) show that our covers are smaller than the GD-L basis and they are computed in time that is comparable to the classic Apriori algorithm for
منابع مشابه
Mining the Informative Rule Set for Prediction
Mining transaction databases for association rules usually generates a large number of rules, most of which are unnecessary when used for subsequent prediction. In this paper we define a rule set for a given transaction database that is much smaller than the association rule set but makes the same predictions as the association rule set by the confidence priority. We call this subset the inform...
متن کاملAssociation Rule Pruning based on Interestingness Measures with Clustering
Association rule mining plays vital part in knowledge mining. The difficult task is discovering knowledge or useful rules from the large number of rules generated for reduced support. For pruning or grouping rules, several techniques are used such as rule structure cover methods, informative cover methods, rule clustering, etc. Another way of selecting association rules is based on interestingn...
متن کاملMining the Smallest Association Rule Set for Predictions
Mining transaction databases for association rules usually generates a large number of rules, most of which are unnecessary when used for subsequent prediction. In this paper we define a rule set for a given transaction database that is much smaller than the association rule set but makes the same predictions as the association rule set by the confidence priority. We call this subset the inform...
متن کاملCompact Weighted Class Association Rule Mining using Information Gain
Weighted association rule mining reflects semantic significance of item by considering its weight. Classification constructs the classifier and predicts the new data instance. This paper proposes compact weighted class association rule mining method, which applies weighted association rule mining in the classification and constructs an efficient weighted associative classifier. This proposed as...
متن کاملGENERATING FUZZY RULES FOR PROTEIN CLASSIFICATION
This paper considers the generation of some interpretable fuzzy rules for assigning an amino acid sequence into the appropriate protein superfamily. Since the main objective of this classifier is the interpretability of rules, we have used the distribution of amino acids in the sequences of proteins as features. These features are the occurrence probabilities of six exchange groups in the seque...
متن کامل